A Derivation of the Cyclic Form Factor Equation
نویسنده
چکیده
A derivation of the cyclic form factor equation from quantum field theoretical principles is given; form factors being the matrix elements of a field operator between scattering states. The scattering states are constructed from Haag-Ruelle type interpolating fields with support in a ‘comoving’ Rindler spacetime. The cyclic form factor equation then arises from the KMS property of the modular operators ∆ associated with the field algebras of these Rindler wedges. The derivation in particular shows that the equation holds in any massive 1+1 dim. relativistic QFT, regardless of its integrability.
منابع مشابه
Analytic Equation of State for the Square-well Plus Sutherland Fluid from Perturbation Theory
Analytic expressions were derived for the compressibility factor and residual internal energy of the square-well plus Sutherland fluid. In this derivation, we used the second order Barker-Henderson perturbation theory based on the macroscopic compressibility approximation together with an analytical expression for radial distribution function of the reference hard sphere fluid. These properties...
متن کاملDerivation of Equation of Motion for the Pillow-Shape Seismic Base Isolation System
Rolling-based seismic isolation systems, in which rollers of circular or non-circular section are used, are less expensive and easier to manufacture. However, this type of isolation suffers from either lack of restoring or re-centering capability, or weakness against uplift forces. To resolve the first shortcoming the use of elliptical as well as pillow-shape rolling parts has been suggested, a...
متن کاملOn the superstability of a special derivation
The aim of this paper is to show that under some mild conditions a functional equation of multiplicative $(alpha,beta)$-derivation is superstable on standard operator algebras. Furthermore, we prove that this generalized derivation can be a continuous and an inner $(alpha,beta)$-derivation.
متن کاملDerivation of turbulent energy of fiber suspensions
The energy equation for turbulent flow of fiber suspensions was derived in terms of second order correlation tensors. Fiber motion of turbulent energy including the correlation between pressure fluctuations and velocity fluctuations was discussed at two points of flow field, at which the correlation tensors were the functions of space coordinates, distance between two points, and time.
متن کاملAnalytical Solution for the Forced Vibrations of a Nano-Resonator with Cubic Nonlinearities Using Homotopy Analysis Method
Many of nonlinear systems in the field of engineering such as nano-resonator and atomic force microscope can be modeled based on Duffing equation. Analytical frequency response of this system helps us analyze different interesting nonlinear behaviors appearing in its response due to its rich dynamics. In this paper, the general form of Duffing equation with cubic nonlinearity as well as par...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997